Những câu hỏi liên quan
tống thị quỳnh
Xem chi tiết
Thắng Nguyễn
10 tháng 8 2017 lúc 22:47

post từng câu một thôi bn nhìn mệt quá

Bình luận (0)
Tôi Là Ai
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Kiệt Nguyễn
1 tháng 8 2020 lúc 8:33

Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)

Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\)\(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)

Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*

\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{​​}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)

Đẳng thức xảy ra khi a = b = c

P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:

Bình luận (0)
 Khách vãng lai đã xóa
Phùng Minh Quân
27 tháng 7 2020 lúc 22:28

1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)

\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)

bài 2 xem có ghi nhầm ko

Bình luận (0)
 Khách vãng lai đã xóa
Phùng Minh Quân
27 tháng 7 2020 lúc 22:50

3a biến đổi tí là xong

b tuong tự bài 1 

Bình luận (0)
 Khách vãng lai đã xóa
Đào Thu Hoà
Xem chi tiết
Thanh Tùng DZ
14 tháng 6 2019 lúc 16:50

\(\frac{b\left(2a-b\right)}{a\left(b+c\right)}+\frac{c\left(2b-c\right)}{b\left(c+a\right)}+\frac{a\left(2c-a\right)}{c\left(a+b\right)}\le\frac{3}{2}\)

\(\Leftrightarrow\left[2-\frac{b\left(2a-b\right)}{a\left(b+c\right)}\right]+\left[2-\frac{c\left(2b-c\right)}{b\left(c+a\right)}\right]+\left[2-\frac{a\left(2c-a\right)}{c\left(a+b\right)}\right]\ge\frac{9}{2}\)

\(\Leftrightarrow\frac{b^2+2ca}{a\left(b+c\right)}+\frac{c^2+2ab}{b\left(c+a\right)}+\frac{a^2+2bc}{c\left(a+b\right)}\ge\frac{9}{2}\)

Áp dụng BĐT Schwarz, ta có :

\(\frac{b^2}{a\left(b+c\right)}+\frac{c^2}{b\left(c+a\right)}+\frac{a^2}{c\left(a+b\right)}\ge\frac{\left(a+b+c\right)^2}{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}=\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\)( 1 )

\(\frac{ac}{a\left(b+c\right)}+\frac{ab}{b\left(c+a\right)}+\frac{bc}{c\left(a+b\right)}=\frac{c^2}{c\left(b+c\right)}+\frac{a^2}{a\left(a+c\right)}+\frac{b^2}{b\left(a+b\right)}\)           ( 2 )

\(\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ac}\)

Cộng ( 1 ) với ( 2 ), ta được :

\(\frac{b^2+2ca}{a\left(b+c\right)}+\frac{c^2+2ab}{b\left(c+a\right)}+\frac{a^2+2bc}{c\left(a+b\right)}\)

\(\ge\left(a+b+c\right)^2\left(\frac{1}{2\left(ab+bc+ac\right)}+\frac{2}{a^2+b^2+c^2+ab+bc+ac}\right)\)

\(\ge\left(a+b+c\right)^2\left(\frac{\left(1+2\right)^2}{2\left(ab+bc+ac\right)+2\left(a^2+b^2+c^2+ab+bc+ac\right)}\right)=\frac{9}{2}\)

Bình luận (0)
Thanh Tùng DZ
14 tháng 6 2019 lúc 17:34

không biết cách này ổn không 

Ta có : \(\frac{b\left(2a-b\right)}{a\left(b+c\right)}=\frac{2-\frac{b}{a}}{\frac{c}{b}+1}\) ; tương tự :...

đặt \(\frac{a}{c}=x;\frac{b}{a}=y;\frac{c}{b}=z\Rightarrow xyz=1\)

\(\Sigma\frac{2-y}{z+1}\le\frac{3}{2}\)          

\(\Leftrightarrow2\Sigma xy^2+2\Sigma x^2+\Sigma xy\ge3\Sigma x+6\)( quy đồng khử mẫu )

\(\Leftrightarrow\Sigma\frac{x}{y}\ge\Sigma x\)( xyz = 1 )           ( luôn đúng )

\(\Rightarrowđpcm\)

Bình luận (0)
Trần Phúc Khang
14 tháng 6 2019 lúc 17:35

1.\(\left(3x+1\right)\sqrt{2x^2-1}=5x^2+\frac{3}{2}x-3\)ĐK \(2x^2-1\ge0\)

<=> \(10x^2-3x-6-2\left(3x+1\right)\sqrt{2x^2-1}=0\)

<=> \(7x^2-4x-8+\left(3x+1\right)\left(x+2-2\sqrt{2x^2-1}\right)=0\)

<=>\(7x^2-4x-8+\left(3x+1\right).\frac{\left(x+2\right)^2-4\left(2x^2-1\right)}{x+2+2\sqrt{2x^2-1}}=0\)

<=> \(7x^2-4x-8+\left(3x+1\right).\frac{-7x^2+4x+8}{x+2+2\sqrt{2x^2-1}}=0\)

<=>\(\orbr{\begin{cases}7x^2-4x-8=0\left(1\right)\\1-\frac{3x+1}{x+2+2\sqrt{2x^2-1}}=0\left(2\right)\end{cases}}\)

Giải (2)

\(2\sqrt{2x^2-1}=2x-1\)

<=> \(\hept{\begin{cases}x\ge\frac{1}{2}\\4x^2+4x-5=0\end{cases}}\)

=> \(x=\frac{-1+\sqrt{6}}{2}\)(thỏa mãn ĐKXĐ)

Giải (1)=> \(x=\frac{2+2\sqrt{15}}{7}\)

Vậy \(S=\left\{\frac{2+2\sqrt{15}}{7},\frac{-1+\sqrt{6}}{2}\right\}\)

Bình luận (0)
Phúc Trần
Xem chi tiết
phan tuấn anh
20 tháng 1 2016 lúc 22:50

cậu đăng mỗi lần 1 đến 2 câu thôi chứ nhiều thế này ai làm cho hết được

Bình luận (0)
Phúc Trần
20 tháng 1 2016 lúc 22:53

Ok lần đầu mình đăng nên chưa biết, cảm ơn cậu đã góp ý, mình sẽ rút kinh nghiệm!!

Bình luận (0)
Mailika Jibu Otochi
20 tháng 1 2016 lúc 23:19

cậu siêu quá , viết thế này chắc tớ chết mất , bạn tải mỗi lần 1, 2 câu thôi .

Bình luận (0)
Lê Tài Bảo Châu
Xem chi tiết
Kiệt Nguyễn
27 tháng 10 2020 lúc 20:41

Bài 2: Ta có: x, y, z không âm và \(x+y+z=\frac{3}{2}\)nên \(0\le x\le\frac{3}{2}\Rightarrow2-x>0\)

Áp dụng bất đẳng thức AM - GM dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta được: \(x+2xy+4xyz=x+4xy\left(z+\frac{1}{2}\right)\le x+4x.\frac{\left(y+z+\frac{1}{2}\right)^2}{4}=x+x\left(2-x\right)^2\)

Ta cần chứng minh \(x+x\left(2-x\right)^2\le2\Leftrightarrow\left(2-x\right)\left(x-1\right)^2\ge0\)*đúng*

Đẳng thức xảy ra khi \(\left(x,y,z\right)=\left(1,\frac{1}{2},0\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
Kiệt Nguyễn
29 tháng 10 2020 lúc 20:24

Bài 3: Áp dụng đánh giá quen thuộc \(4ab\le\left(a+b\right)^2\), ta có: \(2\le\left(x+y\right)^3+4xy\le\left(x+y\right)^3+\left(x+y\right)^2\)

Đặt x + y = t thì ta được: \(t^3+t^2-2\ge0\Leftrightarrow\left(t-1\right)\left(t^2+2t+2\right)\ge0\Rightarrow t\ge1\)(dễ thấy \(t^2+2t+2>0\forall t\))

\(\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\ge\frac{1}{2}\)

\(P=3\left(x^4+y^4+x^2y^2\right)-2\left(x^2+y^2\right)+1=3\left[\frac{3}{4}\left(x^2+y^2\right)^2+\frac{1}{4}\left(x^2-y^2\right)^2\right]-2\left(x^2+y^2\right)+1\ge\frac{9}{4}\left(x^2+y^2\right)^2-2\left(x^2+y^2\right)+1\)\(=\frac{9}{4}\left[\left(x^2+y^2\right)^2+\frac{1}{4}\right]-2\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{9}{4}.2\sqrt{\left(x^2+y^2\right)^2.\frac{1}{4}}-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{9}{4}\left(x^2+y^2\right)-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{1}{4}\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{1}{8}+\frac{7}{16}=\frac{9}{16}\)Đẳng thức xảy ra khi x = y = 1/2

Bình luận (0)
 Khách vãng lai đã xóa
Kiệt Nguyễn
30 tháng 10 2020 lúc 11:38

Bài 4: Theo giả thiết, ta có: \(x\left(x+y+z\right)=3yz\)(*)

Vì x > 0 nên chia cả hai vế của (*) cho x2, ta được: \(1+\frac{y}{x}+\frac{z}{x}=3.\frac{y}{x}.\frac{z}{x}\)

+) \(\left(x+y\right)^3+\left(y+z\right)^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\le5\left(y+z\right)^3\)\(\Leftrightarrow\left(1+\frac{y}{x}\right)^3+\left(\frac{y}{x}+\frac{z}{x}\right)^3+3\left(1+\frac{y}{x}\right)\left(1+\frac{z}{x}\right)\left(\frac{y}{x}+\frac{z}{x}\right)\le5\left(\frac{y}{x}+\frac{z}{x}\right)^3\)(Chia hai vế của bất đẳng thức cho x3)

Đặt \(s=\frac{y}{x},t=\frac{z}{x}\left(s,t>0\right)\)thì giả thiết trở thành \(1+s+t=3st\)và ta cần chứng minh \(\left(1+s\right)^3+\left(1+t\right)^3+3\left(s+t\right)\left(1+s\right)\left(1+t\right)\le5\left(s+t\right)^3\)(**)

Ta có: \(1+s+t=3st\le\frac{3}{4}\left(s+t\right)^2\Leftrightarrow3\left(s+t\right)^2-4\left(s+t\right)-4\ge0\Leftrightarrow\left[3\left(s+t\right)+2\right]\left(a+b-2\right)\ge0\Rightarrow s+t\ge2\)(do \(3\left(s+t\right)+2>0\forall s,t>0\))

Đặt \(s+t=f\)thì \(f\ge2\)

(**)\(\Leftrightarrow4f^3-6f^2-4f\ge0\Leftrightarrow f\left(2f+1\right)\left(f-2\right)\ge0\)*đúng với mọi \(f\ge2\)*

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi x = y = z

Bình luận (0)
 Khách vãng lai đã xóa
Bùi Khắc Tuấn Khải
Xem chi tiết
1st_Parkour
2 tháng 6 2016 lúc 9:26

mk ko bit

Bình luận (0)
Nhớ Mãi Mái Trường Xưa
3 tháng 6 2016 lúc 16:56

mik tính ko ra

Bình luận (0)
Mai Tiến Đỗ
Xem chi tiết
Trần Minh Hoàng
23 tháng 1 2021 lúc 23:22

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

Bình luận (0)
Nguyễn Việt Lâm
23 tháng 1 2021 lúc 23:54

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

Bình luận (0)
Lê Phan Anh Thư
Xem chi tiết
pham trung thanh
29 tháng 5 2018 lúc 16:30

4. Ta có: \(a+b+c=6abc\)

\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)

Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

\(\Rightarrow xy+yz+zx=6\)

Lại có: \(\frac{bc}{a^3\left(c+2b\right)}=\frac{1}{a^3\frac{c+2b}{bc}}=\frac{\frac{1}{a^3}}{\frac{1}{b}+\frac{2}{c}}=\frac{x^3}{y+2z}\)

Tương tự suy ra: 

\(S=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)

\(=\frac{x^4}{xy+2zx}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{x^2+y^2+z^2}{3}\ge\frac{xy+yz+zx}{3}=2\)

Dấu = xảy ra khi \(x=y=z=\sqrt{2}\Rightarrow a=b=c=\frac{1}{\sqrt{2}}\)

Bình luận (0)
Đinh Thị Ngọc Anh
Xem chi tiết